Aihearkisto: Kiertotalouden ratkaisut

Biojätekeräyksen toteuttamistapoja pientaloalueilla

Suomalaisista lähes puolet asuu pientaloissa, joissa biojätteen keräystä ei yleensä ole järjestetty. EU:n jätelainsäädännön kiristyessä tulevaisuudessa on pientaloasukkaidenkin järjestettävä biojätteen keräys tai kompostoitava biojäte. Tässä artikkelissa esitellään tapoja, joilla biojätteen erilliskeräys omakoti- ja pientaloalueilla voitaisiin toteuttaa ympäristö- ja kustannusvaikutuksiltaan tehokkaasti.

Kirjoittajat: Mika Kuparinen ja Susanna Vanhamäki

Johdanto

Euroopan neuvosto hyväksyi keväällä 2018 jätepaketin, jonka mukaan jäsenmaiden on varmistettava 31.12.2023 mennessä että kotitalouksien biojäte kerätään erikseen tai kierrätetään sen syntypaikalla esimerkiksi kotikompostoimalla. Jätepaketin tavoitteena on edesauttaa siirtymistä kiertotalouteen ja vähentää EU:n riippuvuutta raaka-aineiden tuonnista edistämällä luonnonvarojen harkittua, tehokasta ja järkevää käyttöä (Euroopan neuvosto 2018).

Biojäte on kotitalouksissa, ravintoloissa ateriapalveluissa ja vähittäisliikkeissä syntyvää biologisesti hajoavaa elintarvike- ja keittiöjätettä (Euroopan komissio 2016). Suomessa erilliskerättiin vuonna 2016 biojätettä noin 393 000 tonnia, jos kotikompostointi lasketaan mukaan. Sekajätteessä on kuitenkin vielä paljon biojätettä, sillä sekajätettä kerättiin 1,22 miljoonaa tonnia, joka on 44% yhdyskuntajätteestä. (Tilastokeskus 2016) Esimerkiksi Helsingissä biojätteen osuus omakotitalojen sekajätteessä vuonna 2015 oli 42% (HSY 2016).

Suomalaisista asui vuonna 2017 erillisissä pientaloissa noin 2,66 miljoonaa henkilöä, joka on noin 48% väestöstä (Tilastokeskus 2018). Päijät-Hämeessä noin 60% pientaloasukkaista kompostoi biojätteensä (PHJ 2018b). Kaikki eivät kuitenkaan ole valmiita kompostoimaan itse ja biojätteen erilliskerääminen yksittäisiltä kiinteistöiltä ei usein ole kannattavaa kustannuksiltaan eikä ympäristövaikutuksiltaan.

Biojätteen erilliskeräyksen ympäristövaikutuksia ja kustannuksia voidaan pienentää keräämällä usean kiinteistön biojätteet samaan astiaan ja pidentämällä näin sekajätteen tyhjennysväliä. Paikkakunnasta riippuen biojätettä sisältävän sekajätteen tyhjennysväli on kesäisin 1-2 viikkoa ja talvisin jopa 4 viikkoa. Lajittelemalla biojätteen erikseen sekajätteen tyhjennysväliä voidaan pidentää jopa 12 viikkoon ja erillisellä päätöksellä jopa 26 viikkoon (PHJ 2018a). Esimerkiksi Hyvinkäällä ja Valkeakoskella viiden kiinteistön jätekustannuksia voidaan laskea yhteistä biojäteastiaa käyttämällä ja sekajätteen tyhjennysvälin harventamisella 50-73 euroa ja 38-46% vuodessa per kiinteistö (Kiertokapula Oy 2018).

Esimerkkejä biojätekeräyksen toteuttamisesta

Usean kiinteistön yhteinen biojäteastia on toimiva ratkaisu taajama-alueilla, jos biojätettä syntyy liian vähän tai epäsäännöllisesti, jotta kompostointi toimisi kunnolla. Suomessa oli vuonna 2014 noin 1900 biokimppaa, joista suurin osa Jyväskylässä, Pirkanmaalla ja Etelä-Karjalassa. Kimpoissa oli keskimäärin noin 4 taloutta ja tämän tyyppisiä kimppoja oli yhteensä noin 8700 taloutta ja 23 000 henkilöä (Runsten 2014).

Päijät-Hämeen jätehuollolla on kymmeniä kimppoja Orimattilan ja Heinolan taajama-alueilla, joissa kunta järjestää biojätteen erilliskeräyksen. Yhtiö ei ole erityisesti markkinoinut biokimppoja, mutta sen nähdään tulevan ajankohtaiseksi tulevaisuudessa. (Rintala 2018)

Puhas Oy on kampanjoinut Joensuussa oma-aloitteisesti vuodesta 2014 lähtien kesäisin kotikompostoinnin ja yhteisten biojäteastioiden puolesta. Yhtiö tarjoaa asiakkailleen edullisia kompostoreita tai biojäteastian ja puolen vuoden biojätepussit veloituksetta. Biokimppoja on tällä hetkellä 380 ja erilliskerätyn biojätteen määrä onkin noussut viime vuosina. (Puhas Oy 2018; Kukkonen 2018a)

Biojätteen aluekeräyksestä löytyy Suomesta vain muutamia esimerkkejä. Pohjanmaalla on järjestetty biojätteen keräys vapaa-ajan asutuksen keräyspisteisiin kesästä 2018 lähtien (EkoRosk Oy 2018). Mikkelissä on kokeiltu viime vuosina biojätteen aluekeräystä lukollisilla syväkeräysastioilla (Koski 2018). Myös Joensuussa on kokeiltu aluekeräystä yhdellä keräyspisteellä, mutta pienen saannon vuoksi keräystä ei jatkettu (Kukkonen 2018b).

Jätteiden yhteiskeräys uusilla pientaloalueilla

Uusilla pientaloalueilla jätteiden yhteiskeräys voidaan huomioida jo suunnitteluvaiheessa. Kaavassa voidaan määritellä paikat, mihin korttelin tai kujan yhteiset jäteastiat tulee sijoittaa ja tontin vuokrasopimuksessa/kauppakirjassa tontin haltija voidaan velvoittaa liittymään yhteiseen jätekeräykseen. Biojätteen osalta tulisi huomioida asukkaan mahdollinen halu kompostoida biojätteensä itse.

Oulun Hiukkavaaran omakotitaloalueella on meneillään jätehuoltopilotti, jossa alueen omakotitalojen asukkaille on neljä kimppapistettä, joissa on erilliset syväkeräysastiat eri jätejakeille, mukaan lukien biojätteelle. Kimppapistejärjestelmään liittyminen on alueen tontinluovutuksen ehtona. (Kiertokaari Oy 2018) Samanlainen ehto on myös Mikkelin Kirkonvarkauden omakotitaloalueella, jossa syväkeräyspisteiden paikat on myös merkitty kaavaan (Koski 2018).

Mikkelin Orijärven puutaloalueen pientaloasukkaat on velvoitettu jo vuodesta 2003 tonttien vuokrasopimuksen/kauppakirjan mukaisesti liittymään yhteiseen jätekeräykseen. Alueen rakennusvaiheessa kujille rakennettiin jätepisteet ja keskitetty jätehuoltoratkaisu määrättiin kaavalla. (Orijärven asukasyhdistys 2018; Saukkonen 2018b)

Jätekimpalla on yhteensä 13 kujakohtaista jätepistettä, joissa on syväkeräysastia sekajätteelle ja biojäteastia (Kuva 1). Jätekimpassa on tällä hetkellä 117 taloutta (n. 350 henkeä), joista pieni osa kompostoi biojätteensä ympärivuotisesti. Biojätekeräykseen osallistuu ympärivuotisesti 100 taloutta. (Saukkonen 2018a)

KUVA 1. Yksi jätteiden yhteiskeräyspisteistä Orijärven puutaloalueella Mikkelissä. (Kuva: Mika Kuparinen).

Jätekimpan osakkaat saavat kerran vuodessa laskun koko vuoden jätehuollosta. Biojätekeräys laskutetaan jakamalla toteutunut biojätekustannus keräykseen osallistuneiden kesken (Saukkonen 2018a). Biojätekeräyksen kustannukset olivat taloutta kohti vuonna 2017 54 euroa vuodessa (Orijärven asukasyhdistys 2018).

Yhteenveto

Uusia pientaloalueita suunnitellessa ja kaavoittaessa olisi hyvä huomioida yhteinen jätehuolto ja mahdollisuuksien mukaan velvoittaa tulevat asukkaat liittymään yhteiskeräykseen jo tontinluovutusvaiheessa. Kujien tai korttelien yhteiskeräys laskee kuljetuskustannuksia, vähentää jäteautoliikennettä ja mahdollistaa biojätteen erilliskeräyksen niille, jotka eivät kompostoi.

Jo olemassa olevilla pientaloalueille olisi hyvä markkinoida aktiivisesti yhteisiä biojäteastioita yhdessä kotikompostoinnin kanssa. Biokimppojen toimivuudesta on onnistuneita esimerkkejä ympäri Suomea mutta niiden perustaminen voi olla haastavaa, jos saman kujan asukkaista useat kompostoivat biojätteensä itse. Kimpan perustamiseen voidaan kannustaa tekemällä se mahdollisimman helpoksi, esimerkiksi tarjoamalla biojäteastia ja mahdollisuus jakaa lasku osakkaiden kesken.

Lähteet

Ekorosk Oy. 2018. Vappu tuo eriävät aukioloajat ja biojäteastioita mökkien keräyspisteisiin. [Viitattu 5.10.2018]. Saatavissa: https://www.ekorosk.fi/fi/company/news/Bio_waste_collection_from_Cottag

Euroopan komissio. 2016. Biodegradable Waste. [Viitattu 8.10.2018]. Saatavissa: http://ec.europa.eu/environment/waste/compost/index.htm

Euroopan neuvosto. 2018. Jätehuolto ja kierrätys: neuvostolta uudet säännöt. [Viitattu 26.9.2018]. Saatavissa: http://www.consilium.europa.eu/fi/press/press-releases/2018/05/22/waste-management-and-recycling-council-adopts-new-rules/

HSY. 2016. Pääkaupunkiseudun seka- ja biojätteen koostumus vuonna 2015. Kotitalouksien ja palvelutoimialojen sekajätteen sekä Ämmässuolla käsiteltävän biojätteen koostumustutkimus. Helsinki: Helsingin seudun ympäristöpalvelut -kuntayhtymä. [Viitattu 8.10.2018]. Saatavissa: https://www.hsy.fi/sites/Esitteet/EsitteetKatalogi/Raportit/Paakaupunkiseudun_seka-ja_biojatteen_koostumus_vuonna_2015.pdf

Kiertokaari Oy. 2018. Oulussa testataan omakotitaloalueella jätteiden kimppakeräystä. [Viitattu 9.10.2018]. Saatavissa: https://kiertokaari.fi/hiukkavaarassa-testataan-omakotitalojen-jatteiden-kimppakeraysta/

Koski, J. 2018. Ympäristöinsinööri. Metsäsairila Oy. Puhelinhaastattelu 27.9.2018.

Kukkonen, T. 2018a. Puhas Oy. Sähköposti 12.10.2018.

Kukkonen, T. 2018b. Puhas Oy. Puhelinhaastattelu 12.10.2018.

Orijärven asukasyhdistys. 2018. [Viitattu 5.10.2018]. Saatavissa: https://orijarvi.blogspot.com/p/tapahtumakalenteri_13.html

Puhas Oy. 2018. Biojätteen kompostoriin tai biokimppa-astiaan. [Viitattu 9.10.2018]. Saatavissa: https://www.puhas.fi/biojatekampanja.html

PHJ. 2018a. Päijät-Hämeen jätehuolto. Jäteastioiden tyhjennysvälit. [Viitattu 8.10.2018]. Saatavissa: https://www.phj.fi/kiinteiston-jatehuolto/jateastioiden-tyhjennysvalit/

PHJ. 2018b. Päijät-Hämeen jätehuolto. Paikallinen näkökulma. Tuula Honkanen, puheenvuoro BMT-kiertotaloustapahtumassa 8.5.2018.

Rintala, H. 2018. Palvelukoordinaattori. Päijät-Hämeen jätehuolto. Puhelinhaastattelu 15.10.2018.

Runsten, S. 2014. Biojätteen erilliskeräyksen ympäristövaikutukset. S. 11-13. [Viitattu: 1.10. 2018]. Saatavissa: http://vanha.jly.fi/Runsten_2014.pdf

Saukkonen, K. 2018a. Orijärven jätekimpan isännöitsijä. Sähköposti 28.9.2018.

Saukkonen, K. 2018b. Orijärven jätekimpan isännöitsijä. Puhelinhaastattelu 4.10.2018.

Tilastokeskus. 2016. Yhdyskuntajätekertymä 2016. [Viitattu: 26.9.2018].
Saatavissa: http://www.stat.fi/til/jate/2016/13/jate_2016_13_2018-01-15_tau_001_fi.html

Tilastokeskus. 2018. Kerrostaloasumisen suosio kasvaa. [Viitattu: 8.10.2018]. Saatavissa: http://www.stat.fi/til/asas/2017/asas_2017_2018-05-17_tie_001_fi.html

Kirjoittajat

Mika Kuparinen opiskelee ympäristöinsinööriksi Lahden ammattikorkeakoulussa Tekniikan alalla.

Susanna Vanhamäki toimii TKI-asiantuntijana Lahden ammattikorkeakoulussa Kiertotalouden ratkaisut -painoalalla.

Artikkelikuva: Mika Kuparinen

Julkaistu 1.11.2018

Viittausohje

Kuparinen, M. & Vanhamäki, S. 2018. Biojätekeräyksen toteuttamistapoja pientaloalueilla. LAMK Pro. [Viitattu ja pvm]. Saatavissa: http://www.lamkpub.fi/2018/11/01/biojatekerayksen-toteuttamistapoja-pientaloalueilla/

IWAMA – Capacity Development Activities

The wastewater treatment sector is under the challenge that are caused not only the global drivers (e.g., urbanization, climate change, aging population), but also the rapid development of the water management technology with the increased requisites for the water purification (e.g., micro-plastics, medical residues, etc.). IWAMA-project introduces capacity development activities and -tools for the wastewater treatment sector of the Baltic area to tackle these challenges.

Authors: Katerina Medkova and Sami Luste

Introduction

The lack of training, awareness and interactive international information share have been identified as one of the major limitations regarding the energy- and resource-efficient management of the wastewater processes in the Baltic Sea Region (E.g., PRESTO project 2011-2014; PURE project 2007-2013).

By increasing knowledge and providing up-to-date technical information, the efficiency of wastewater treatment plants, regarding both the energy savings and nutrient removal, can be noticeably improved. At the same time, continuous learning alongside with the technology development can lead to a better environmental state of the Baltic Sea.

IWAMA – Interactive Water Management project aims at improving wastewater management in the Baltic Sea Region (BSR). The triple fields of IWAMA activities include the capacity development of the wastewater treatment operators, improving the energy efficiency and sludge management.

LAMK is responsible for the Capacity Development for wastewater sector experts. Capacity development is also enabled through international onsite workshops and online webinars. During the capacity development workshops and webinars, the most recent knowledge on smart sludge and energy management is presented. An added value is brought by sharing the lessons learned from the pilot investments conducted in IWAMA. In addition, the formation of national knowledge-based communities (NKBC) of the lifelong learning in each partner country is enabled.

What has been done?

 All six workshops and four webinars have been organised on different themes (Figure 1). The onsite workshops consisted of topic related presentations, lectures, case studies, and dedicated neighbourhoods’ sessions. Site visits to the local WWTPs were an integral part of the international workshops held in different BSR countries. The content of the workshops have been continuously evaluated and developed and new elements have been added later on: panel discussions and suppliers orienteering sessions. The valuable and up-to-date presentations have been recorded for their later use in capacity development. Carefully selected presentations have been also transcribed with English subtitles and some of them translated into national languages, such as Finnish, German, Estonian, Russian and Lithuanian. At the same time, these events provided an opportunity for networking, gaining new information and continuous knowledge and experience exchange with other water stakeholders in the BSR.

Figure 1. IWAMA Workshops and Webinars Overview

These recorded presentations will be available in a Training Material Package (TMP), an online Moodle-based platform, built by LAMK, providing educational materials for WWT sector, associations, universities, NKBCs, or anyone interested in WWT. The TMP is under the development and the first testing of the elements has been conducted. Besides the presentations and recordings, other lifelong learning tools are being developed during the course of the project, such as the WWTP game (Image 1) and virtual learning tests.

Image 1. Screenshot of the WWTP game being developed by LAMK

The water-, waste and wastewater associations and universities (LAMK, ECAT-Lithuania, LNU, EVEL, DWA) have started to modify and fill the national sections of the online TMP, translate materials for WWTP game and virtual tests.

Insights from the WS6

The theme of the last international Capacity Development workshop was in the name of “Constructional and operational challenges” and it took place in Gdańsk, Poland on 20.-21.9.2018. The first day started with a visit to Kazimierz Water Tower, located on an island (Image 2). Besides the technological purpose of the modern tower, it serves as an educational centre.

Image 2. Kazimierz Water Tower (Photo by Katerina Medkova)

The second day was filled with presentations, discussions, case studies and targeted parallel sessions. Case studies presented solutions to personnel demand and management challenges in Germany, Finland, Estonia and Poland. For instance, Ms Sirpa Sandelin from Satakunta University of Applied Sciences, Finland, emphasized the importance of ageing personnel and diminishing workforce in wastewater treatment plants. Managing knowledge, especially the tacit knowledge and its transfer to new generation employees, is essential for water utilities. Knowledge management supports learning in organisations, as only 20 % is learned at schools. The majority of knowledge and skills (80%) is achieved at work through work experience and on-the-job training. Lifelong learning is seen as an investment for the future and a key in today’s competitive and fast-changing world. (Sandelin 2018) “Lifelong learning of the personnel should be seen as a responsibility of both the employer and the employee”, Ms Sandelin (2018) stated.

The last day took place in the premises of the Gdańsk wastewater treatment plant, where the theoretical presentations followed by a detailed visit of the large plant, including the plant, combined anammox- constructed wetland pilot-plant, and the incineration and CHP plants. A beautiful Hevelius Fountain Show ended the workshop.

Image 3. Gdańsk wastewater treatment plant (Photo by Katerina Medkova)

IWAMA, funded by INTERREG Baltic Sea Region Programme 2014-2020, is a flagship project of the European Union Strategy for the Baltic Sea Region. More information about IWAMA project is available at https://www.iwama.eu/.

References

IWAMA. 2017. About IWAMA. [Cited 10 Oct 2018]. Available at: https://www.iwama.eu/about

Sandelin, S. 2018. Knowledge Management and Retention in Finnish WWTPs.  IWAMA 6th Capacity Development Workshop. IWAMA. [Cited 10 Oct 2018]. Available at: http://www.iwama.eu/sites/iwama/files/8._knowledge_management_and_retention_in_finnish_wwtps_sandelin.pdf

Authors

Katerina Medkova and Sami Luste both work in the IWAMA project in LAMK.

Illustration:  Gdańsk wastewater treatment plant. Photo by Katerina Medkova.

Published 22.10.2018

Reference to this publication

Medkova, K. & Luste, S. 2018. IWAMA – Capacity Development Activities. LAMK Pro. [Cited and date of citation]. Available at: http://www.lamkpub.fi/2018/10/22/iwama-capacity-development-activities/

 

Informal Sector and Waste Management in Rustenburg, South Africa

Informal sector forms a considerable part of economies and employment especially in less developed countries. Waste collection and recycling is one of the sectors that offers income for the officially unemployed and migrants in many African countries.

Authors: Maarit Virtanen, Antti Eerola and Päivi Lahti

Characteristics of informal economy in Africa

Although informal economy is often associated with small-scale business, it does actually provide a living for about 60 % of people working outside of agriculture in Sub-Saharan Africa, with transnational trading and remittance networks (Meagher 2017, 18, 21). According to the International Labour Organisation (2013, 3), the gross value added (GVA) contribution of informal enterprises in non-agricultural GVA is approximately 50 % in the countries of Sub-Saharan Africa. In South Africa, the informal sector is much smaller than in less developed African countries, but it is still represents 16,7 % of total employment (Skinner 2016). In South Africa, about 41 % of those working in the informal sector are trading. This is followed by construction and community and social service. (Skinner 2016.)  Waste collection and recycling has been and still is a significant part of informal sector in many cities and municipalities.

The official unemployment rates are high in many African countries, and they do not include immigrants. The unemployed still need to earn some kind of livelihood, and informal economy is silently accepted in local communities. Illegal immigrants are a small but probably the most problematic part of informal sector, because they live in unauthorized settlements and on illegal businesses or crime. This may raise xenophobia and increase insecurity especially in the poorest townships. (Crush et al. 2015, 1.)

IMAGE 1. An example of informal economy services at a township (Skinner 2016).

Informal economy and waste management in Rustenburg

The informal sector plays a significant role in Rustenburg’s economy and is also a political issue. Municipal authorities strive to keep the informal sector under control and do not want it to grow. However, as both internal and external migration is growing fast, the municipality is not able to keep up with infrastructure and basic services for new arrivals. This results in an increasing informal labour force and unauthorized housing. In Rustenburg, the official unemployment rate is 26,4 % and youth unemployment rate is 34,7 %. Only 8,9 % of inhabitants have a higher education degree. (National Government of South Africa 2016.)

Waste management and household waste collection in Rustenburg is coordinated by the municipality’s Waste Unit. Residents leave their waste bags outside their houses on a certain date for the weekly collection. The waste is then collected and transported to the Waterval landfill site. (Rustenburg Local Municipality 2018.) The collection covers most parts of the city, but not the fast spreading informal settlements. In the poorest townships, the residents do not pay for the services, which increases the pressure on the municipality resources.

The Waterval landfill site was opened in 2016 with the aim of providing modern sorting and recycling services.  However, recycling has been slow to start and most of the reusable waste is still handled and collected by informal waste pickers working both on the streets and at the landfill site. (Virtanen 2017.) The informal pickers sort mainly plastics, metal, cardboard and glass from household waste. Pickers walk long distances collecting and transporting the waste to local buy-back centres. Work is hard, dirty, sometimes even dangerous, and cash compensation is small and varies a lot.  Buy-back centres do not register the collectors and it is difficult to estimate the impact of recycling as employment, but clearly it has an impact. The municipality is working on the registration of informal pickers, but the work has proved challenging. Most pickers are immigrants from neighbouring countries and they do not stay long in one place.

IMAGE 2. Waterval landfill site (Photo: Maarit Virtanen).

Currently informal sector is a significant part of waste management in Rustenburg. Formalising the whole chain of waste management could lead to a more efficient recycling and better working conditions, but implementation is not easy. The Rustenburg Local Municipality plays an important role in providing space and facilities for recycling activities, but it is struggling to provide services for the fast growing population.

About the project

Co-creating Sustainable Cities – Lahti (Finland), Rustenburg (South Africa), Ho (Ghana) Local Government Cooperation – project is a cross-sectorial development project implemented in 2017-2018. The project focus is on developing municipal services through circular economy and urban planning, emphasizing particularly waste management and sanitation through local pilots and initiatives.

The expected outcome of the project is to co-create viable businesses and generate capacity for more efficient municipal services by means of improved recycling, material recovery, nutrient recycling and sanitation coverage. Local stakeholders are encouraged to take action in turning waste into wealth. Co-creating Sustainable Cities project is coordinated by LAMK and funded by the Finnish Ministry for Foreign Affairs.

References

Crush, J., Skinner, C. & Chikanda, A. 2015. Informal Migrant Entrepreneurship and Inclusive Growth in South Africa, Zimbabwe and Mozambique.  Cape Town: Southern African Migration Programme (SAMP)/Bronwen Dachs Müller. [Cited 11.9.2018]. Available at: http://samponline.org/wp-content/uploads/2016/10/Acrobat68.pdf

International Labour Organisation. 2013. Measuring informality: A statistical manual on the informal sector and informal employment. Geneva: International Labour Office. [Cited 14.9.2018]. Available at: http://www.ilo.org/stat/Publications/WCMS_222979/lang–en/index.htm

Meagher, K. 2017. Cannibalizing the informal economy: Frugal innovation and economic inclusion in Africa. The European Journal of Development Research. Vol. 30(1), 17-33. [Cited 25.8.2018]. Available at: https://doi.org/10.1057/s41287-017-0113-4

National Government of South Africa. 2016. Rustenburg Local Municipality. [Cited 13.9.2018] Available at: https://municipalities.co.za/demographic/1191/rustenburg-local-municipality

Rustenburg Local Municipality. 2018. Services/Waste Management. [Cited 11.9.2018] Available at: https://www.rustenburg.gov.za/services/waste-management/

Skinner, C. 2016. Informal Sector Employment: Policy Reflections. REDI 3×3 Conference, 28 November 2016. [Cited 14.9.2018]. Available at: https://www.africancentreforcities.net/wp-content/uploads/2016/12/REDI-input-Skinner-final.pdf

Virtanen, M. 2017. Co-creating Rustenburg Circular Economy Road Map in South Africa. LAMK Pro. [Cited 14.9.2018]. Available at: http://www.lamkpub.fi/2017/12/08/co-creating-rustenburg-circular-economy-road-map-in-south-africa/

About the authors

Maarit Virtanen is the Project Manager for Co-creating Sustainable Cities project that promotes waste management and circular economy in Rustenburg. Päivi Lahti is a planner in the same project. Antti Eerola studies International Business at LAMK and did a two-month internship in Rustenburg.

Published 19.9.2018

Reference to this publication

Virtanen, M. & Eerola, A. & Lahti, P. 2018. Informal Sector and Waste Management in Rustenburg, South Africa. LAMK Pro. [Electronic magazine]. [Cited and date of citation]. Available at: http://www.lamkpub.fi/2018/09/19/informal-sector-and-waste-management-in-rustenburg-south-africa

Biowaste Collection in Selected EU Countries

The European Commission has set stricter regulations on waste separation, including biowaste. By the end of 2023, biowaste must be completely separated or recycled at source. Separate biowaste collection and composting play an essential part in the bio-based circular economy. This article analyses current biowaste management trends in selected European regions.

Authors: David Huisman Dellago & Katerina Medkova

Introduction

The ever-increasing resource consumption is causing waste production to be growing each year. In an effort to achieve sustainable development, cities across the globe are pushed to improve the waste management. An important part of household waste comes in the form of biowaste. EU considers as biowaste every biodegradable waste in the form of food (households, canteens, enterprises etc.) and green waste (parks, gardens etc.) (Council Directive 2008/98/EC).

Biowaste comprises waste from biodegradable nature, meaning it can be broken down naturally. The degradation, however, has negative environmental impacts as it produces Greenhouse gases (GHGs) such as methane. Additionally, if not correctly handled, it can pollute the waterways through run-offs. Even though environmental issues are known, the reality is that still many cities are dumping high amounts of biowaste in landfills.

Biowaste collection is an essential part of the waste management systems. It is considered the first step in biowaste management and if carried out correctly, it can positively impact the posterior steps in the process. The importance of adequate collection systems is due to the need of separating biowaste from general waste.

Therefore, correctly managed biowaste not only has environmental benefits but opens a market to new possibilities. The treatment aims at converting the waste into useful by-products, such as fertilizers or energy (biofuels). Conversion is a sustainable method that is a part of the biological cycle of circular economy ( Ellen MacArthur Foundation 2017). Some examples of biowaste treatment include the conversion of lignocellulosic biomass from food waste into ethanol, anaerobic digestion to create biogas (methane) or liquid bio-oil creation through pyrolysis (Khanal & Surampalli 2010). Composting is an attractive method, which is proven to directly benefit households, as it can be practiced domestically by citizens (Mihai & Ingrao 2018).

Treating biowaste as a valuable resource for products and energy challenges many governments, including the EU. Through the creation of the waste package, the EU addressed four different directives. The main directive is the waste framework directive (WFD). WFD sets the guidelines on waste management for national policies. The landfill directive aims at reducing the amount of waste destined to landfills, including biowaste. The packaging waste and the electronic waste directives regulate the use of packaging and electronic waste respectively. (Council Directive 2008/98/EC)

In a new effort to improve waste management in the EU, the European Council reached a provisional agreement with the Commission (with the ambassadors’ approval) (European Council 2017). The provisional agreement is a result from the action plan following the 2015 Circular Economy Package (European Commission 2015). It aims at reinforcing the objectives of the waste package by updating current standards. In fact, it sets stricter regulations including extended producer responsibility and mandatory waste separation (including biowaste). In addition, the agreement sets that by the end of 2023 biowaste must be completely separated or recycled at source (European Council 2018). Finally, with the new agreement, countries are expected to comply with higher standards. The situation of biowaste management in the EU is of special interest. This article analyses the biowaste management trends throughout different European regions, in order to understand how it works.

Research

Biowaste management practices are collected through the implementation process of two Interreg Europe projects, BIOREGIO and ECOWASTE4FOOD, due to their common aim at promoting bio-based circular economy and moving towards a sustainable and inclusive growth. Both projects desire to promote biowaste and foodwaste as a valuable resource for an efficient and environmentally friendly economy.

BIOREGIO focuses on regional circular economy models and best available technologies for biological streams. The project boosts the bio-based circular economy through a transfer of expertise about best available technologies and cooperation models, such as ecosystems and networks. The project runs from 2017 to 2021 and involves eight partners from six European regions. (Interreg Europe 2017a)

ECOWASTE4FOOD project supports eco-innovation to reduce food waste and promotes a better resource efficient economy. The project brings together seven local and regional authorities throughout Europe to address the crucial issue of food waste. The project runs from 2017 to 2020. (Interreg Europe 2017b)

Besides the project partners, both aforementioned projects actively involve groups of local stakeholders in the identification of local good practices, recognition of good practices from other EU regions, and their selection and implementation in the regional action plans. At the same time, by increased knowledge gained during the project, regions will be better equipped to improve their own policy instruments, in particular by funding new projects, improving the management of the instruments and influencing the strategic focus of the instruments.

Specifically, questionnaires were distributed in the framework of the BIOREGIO and ECOWASTE4FOOD projects in the participants regions. Those include regions in Finland, France, Greece, Italy, Poland, Romania, Slovakia, Spain and the UK (Figure 1).

Questionnaires were distributed to 11 regions by emails and completed electronically. To avoid any misunderstandings, the researcher had a close monitor of the procedure. All data were subjected to quality control and measurements not satisfying the requirements were rejected. Studied countries were responsible for providing the most relevant and up-to-date information based on their regional trends.

The questionnaire was distributed during March-April 2018. The questionnaire involved a series of questions based on biowaste collection, processing and future policies. However, only biowaste data will be presented in this article. A qualitative assessment was carried out at the collected data.

Figure 1. The studied regions

Results

The survey proves existence of different biowaste management services and operations among the European regions. An overview of the results can be seen in Table 1.

Table 1. Biowaste Collection in select EU countries

The majority of the regions separately collect biowaste. Sud Muntenia (Romania), on the other hand, does not collect it separately.

The percentage of biowaste separately collected from the total amount of bio-waste produced in a region varies significantly. In fact, regional differences are observed even within the same nations. For example, Finland’s Päijät-Häme region separately collects about 50% biowaste from the total biowaste in contrast with 24% in the South Ostrobothnia region. In Castilla-La Mancha (Spain), Pays de la Loire (France), and Central Macedonia (Greece), only 5% of biowaste is separately collected from the total biowaste production. Other regions, like Catalonia (Spain) and Ferrara (Italy), operate between 33 and 48%. The results are based on both garden waste and foodwaste. However, for instance, in the city of Devon, UK, the majority of the biowaste separated (65%) includes garden waste (39%). Regarding Castilla- la Mancha, the data collected constitutes from garden waste only.

In every separate collection service, except in Greece, households are responsible for the biowaste separation. In addition, enterprises and food industry participate to the biowaste management in Finland, Spain, France, UK and Italy. Enterprises include businesses and institutions such as education centres, government offices, businesses and zoos. Currently, Greece focuses only on enterprises as the main responsible for separating biowaste, however, responsibility of municipalities has been piloted.

The concern of the EU for reduction of food waste ending up in landfills is linked to the concern of waste packaging as expressed in the recent waste management agreement (European Council, 2018). According to the questionnaire, the waste generator (supermarkets, consumers, etc.) usually removes food packaging. However, in the regions of Central Macedonia and Pays de la Loire, no food packaging rule is applied upon producers before its disposal. Nonetheless, it is important to mention that in France, further treatment regarding food packaging is voluntary on the waste collector. On the other hand, Finnish regions and Devon (UK), implement an extensive food packaging management system, where consumers and industries are responsible for the separation. Furthermore, processing plants are capable of removing the packaging on site (e.g. anaerobic digestion plants have front-end technology to remove plastic packaging).

In the majority of the regions who separately collect biowaste, household biowaste is defined as a pure household (domestic) and biowaste produced in small businesses (cafeterias, schools, offices etc.). Only Finnish and Spanish regions consider additionally green/garden waste as household biowaste. In the UK, other types of waste, such as cooking oil, fall under the biowaste umbrella for that region.

Household biowaste is collected for further treatment, in either separate (bin) collection or in collective (shared bin) collection, except for the Spanish and French regions. Separate collection is mainly collected twice a week, although in South Ostrobothnia this is done every week.

An interesting method of biowaste handling, which is linked to household waste management, is self-composting. This method is used on a smaller scale in comparison to separate bin collection. Households in Devon, Pays de la Loire, Catalonia and Ferrara do not exceed 10%. This is a significantly small amount if compared with Päijät-Häme 62% private composting rate. In Finland, the limitations are seen in winter, when the temperatures can freeze the compost. Halfway, we can find Nitra’s 20% separation rate. Self-composting is also implemented in several municipalities in the Region of Central Macedonia but without recording a number of users.

Overall, biowaste collection services are charged in two different ways: to the Municipal authority as a tax or directly to the waste management company in the form of a private contribution. Finnish, Italian and Polish regions opt for the latter, making biowaste collection a private business, which is managed by the collection companies. In Romania, waste fees are collected either by local authorities or by private companies. The rest of the European regions tax the families for the collection services, acting as a mediator between the waste management companies and the waste producers. In France, there is a possibility of delegation where the municipal authorities give the responsibility to waste management companies directly and/or associations (recycling companies). In Slovakia, there are two methods taking place. The waste collection is financed according to the producer status. This means local domestic waste is financed by a municipal tax whilst business generated biowaste is managed by private contributions to a waste transportation company.

According to the study, there is a positive change envisioned for the future. In Castilla-La Mancha, a recent regional proposal was approved making biowaste separation mandatory for the food industry, restaurants, enterprises and households. It will be implemented in late 2018 and the collection method will be decided by each council.

Furthermore, the recent regional law implemented in January 2018 in the region of Wielkopolska, is still progressively being implemented in the remaining municipalities. This means that for now only, the city of Poznan is implementing mandatory biowaste separation and the rest of the municipalities are to follow in the upcoming years. Those are indeed, promising news for the biowaste collection situation in the European Union.

Conclusions and discussion

To conclude, it is important to point out the main trends regarding waste management in the selected European regions. Major disparity has been found in biowaste separation from general waste, as some regions such as Päijät-Häme, Devon or Ferrara are recovering 50% or more of their biowaste, whilst others are struggling to meet a 1% separation rate. Differences between regions in the same territory have been found. For example, in Spain, Catalonia separates 32% more than Castilla-La Mancha (0.9%) or in Finland, Päijät-Häme separates double the rate of South Ostrobothnia. Regarding Spain, Catalonia is one the pioneering regions in the implementation of household biowaste collection. As a result, other regions nationwide are found to be behind in that aspect but are working on improving their collection systems. Thus, Catalonia can be considered an exception within the country.

Out of all the countries, Romania does not collect nor separate biowaste as it ends in the landfills contributing to the country’s waste management concerns. Whilst other regions, such as, Castilla-La Mancha do not separately collect biowaste but rather separate later on in waste management centres.

In the region of the Pays de la Loire, France, composting is the main method of handling biowaste and a separate collection exists for garden waste only. The rest of the regions are separately collecting biowaste through a variety of methods. Mainly it includes the use of private containers for single families or common containers that are shared among different households/businesses. Composting is also practised in combination with this method; however, the main limitations include freezing winter conditions (Finland) or lack of infrastructure (Poland).

Biowaste is mainly collected once a week (Finland, Poland, UK), once in two weeks (Finland, Slovakia) or twice a week (Italy). Furthermore, in Spain, biowaste is collected up to 4 times a week during the hotter summer periods.

The topic of the study was actual and had a direct connection to the goals of both Interreg Europe projects: BIOREGIO and ECOWASTE4FOOD. The study contributed to a better overall understanding of the disunited biowaste terminology, various collection systems and rates, local challenges, and preferences in the selected regions. Identification and sharing of good practices related to biowaste and foodwaste may considerably accelerate the achievement of completely separated or recycled biowaste at source as required by the European Council. Findings are also useful for future research and development purposes of waste management systems.

 Acknowledgments

The authors would like to express their gratitude to the Interreg Europe Programme for the funding of the projects “BIOREGIO – circular economy models and best available technologies for biological streams” and ”ECOWASTE4FOOD – Supporting Eco-innovation to reduce food waste and promote a better resource efficient economy ”.

Also, we would like to thank the local stakeholders, partners and all the participants who helped with data collection.

References

Council Directive 2008/98/EC of 19 November 1992 on waste and repealing certain Directives. [Cited 21 Mar 2018]. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN

Ellen MacArthur Foundation. 2017. Circular Economy.  [Cited 23 Jan 2018]. Available at: https://www.ellenmacarthurfoundation.org/circular-economy/interactive-diagram

European Commission. 2015. CE Package. [Cited 6 Feb 2018]. Available at: https://ec.europa.eu/commission/priorities/jobs-growth-and-investment/towards-circular-economy_en

European Council. 2017. Council and Parliament reach provisional agreement on new EU waste rules. [Cited 21 Mar 2018]. Available at: http://www.consilium.europa.eu/en/press/press-releases/2017/12/18/council-and-parliament-reach-provisional-agreement-on-new-eu-waste-rules/

European Council. 2018. EU ambassadors approve new rules on waste management and recycling. [Cited 21 Mar 2018]. Available at: http://www.consilium.europa.eu/en/press/press-releases/2018/02/23/eu-ambassadors-approve-new-rules-on-waste-management-and-recycling/

Interreg Europe. 2017a. BIOREGIO – Regional circular economy models and best available technologies for biological streams. [Cited 21 Jan 2018]. Available at: https://www.interregeurope.eu/bioregio

Interreg Europe. 2017b. ECOWASTE4FOOD – Supporting eco-innovation to reduce food waste and promote a better resource efficient economy. [Cited 21 Jan 2018]. Available at: https://www.interregeurope.eu/ecowaste4food/

Khanal, S. K. & Surampalli, R. Y. 2010. Bioenergy and Biofuel from Biowastes and Biomass. s.l.:American Society of Civil Engineers.

Mihai, F.-C. & Ingrao, C. 2018. Assessment of biowaste losses through unsound waste management practices in rural areas and the role of home composting. Journal of Cleaner Production. Vol 172, 1631-1638.

Authors

David Huisman Dellago is an Environmental Science student from Avans UAS (The Netherlands). He is an intern for the BIOREGIO project at LAMK.

Katerina Medkova works as a coordinator at LAMK. She is the BIOREGIO project Communication Manager.

Illustration: https://www.pexels.com/photo/three-lemon-peels-1405667/ (CC0)

Published 13.9.2018

Reference to this article

Huisman Dellago, D. & Medkova, K. 2018. Biowaste Collection in Selected EU Countries. LAMK RDI Journal. [Cited and date of citation]. Available at: http://www.lamkpub.fi/2018/09/13/biowaste-collection-in-selected-eu-countries/

Effects of moisture on automatic textile fiber identification by NIR spectroscopy

Lahti UAS has recently acquired a textile identifying and sorting unit REISKAtex® in order to develop identification analytics for different textile fibers. This article evaluates the effect of various humidity conditions in near infrared (NIR) spectrum of three different textile fiber materials, namely cotton, wool, and polyester.

Authors: Jussi Salin and Lea Heikinheimo

Introduction

Textile recycling has a significant environmental impact. In Finland, 71.2 million kg of textiles is removed from use each year (Dahlbo et al. 2015, 41). Various existing and new recycling processes for textile fibers depend on the purity and the right type of fiber material for each recycling process, because wrong materials create interference (Schmidt et al. 2016, 9; Fontell & Heikkilä 2017, 36). Automatic sorting could allow a larger portion of the textile waste flow to be processed into new fibers, if the fiber material contents of the recyclable textiles can be identified in order to send each textile for appropriate processing. In automatic sorting, a NIR analyzer could be used to identify the fiber materials of the recyclable textiles.

Water is known to be a significant variable in NIR spectroscopy, and therefore it could affect the automatic identification result of a NIR analyzer (Smith 2011, 16). Water absorption is used to determine the amount of water absorbed in textile materials under specified conditions. Factors affecting water absorption of a fabric are type of textile fiber, fabric structure, temperature, and length of exposure.

The analyzer used in this study is attached to a sorting unit located at Lahti UAS. This study is part of the Telaketju project. Telaketju is a co-operation network in Finland, which promotes circular economy by creating improvements both in recycling processes and in the flow of materials between companies. Telaketju is coordinated by VTT and Lounais-Suomen Jätehuolto Oy. The storage conditions of discarded textiles have raised concerns, including the effects of absorbed moisture. Developing automatic textile sorting is one key area of improvement of recycling. (Fontell & Heikkilä 2017, 31; Telaketju 2018.)

Testing methods and equipment

All fabrics used in the test have been stored in a normal room at the faculty, which has been at about 19 % relative humidity (RH) and 19 °C temperature throughout the experiment. The fabrics that are used for moisture testing are dried in a UT 12 drying cabinet by Kendro Laboratory Products at 104 °C. They are being dried till their weight stabilizes. An A&D GF-3000 digital scale is used for weighing the samples. Dry weights of the test fabric pieces can be obtained at this point. Next, the test fabrics are placed in various conditions, where they absorb air moisture till their weight no longer increases. The various moisture conditions are generated either by an ARC-500 weather cabinet by ArcTest company, or in a special room that has a Conairr CP3 air moisturizer and a temperature-controlled Glamox 200 radiator. (Salin 2018, 64-65.)

Between each tested moisture condition, the test fabrics are dried again to eliminate the hysteresis effect that occurs in textile fibers. If the fabric was not dried, it would gain slightly more moisture in a moist condition for being already in a more “open” state. In standard test methods, conditioning should always begin in the dry state (Collier & Epps 1999, 64).

NIR spectrums are obtained with NIRS Analyzer Pro by Metrohm AG, which is accompanied by Vision software. The software is used for gathering spectrums of textile samples, plotting them as graphs, and for creating an identification library. The identification library is trained with numerous samples of all textile fiber material groups chosen for the test. After verifying the library, it is then possible to attempt automatic identification of the test samples in their different moisture states, to report if identification fails at certain known amounts of moisture. The spectral range of the analyzer is between 1100 nm and 1650 nm (Metrohm AG 2017).

Fabric samples

Textile samples are taken from the textile library of Lahti UAS, which has collected fabrics of various fiber materials by various textile and fiber manufacturers. A total of 65 cotton fabrics, 9 wool fabrics and 178 polyester fabrics were chosen for training the identification library in Vision software (Salin 2018, 31).

One separate fabric piece of each fiber material is chosen for moisture testing. The structure of all three fabrics is plain weave (Salin 2018, 66).

Effects on fabric weight

The digital scale reports weights with 0.01 g accuracy when test fabrics are measured multiple times in a row. After weighing the test fabrics in each condition and calculating how much their weight has changed from dry weight, a graph is drawn (see Figure 1). The weight of wool is greatly increased by air humidity, it therefore being the most hydrophilic fiber material in the test, whereas cotton shows only relatively small increases. Polyester appears to be unaffected by humidity.

Figure 1. Measured water content increase of each test sample in different conditions next to commercial moisture regain coefficients located at 65.0 % RH and 20.0 °C (Salin 2018, 69).

By knowing dry weights of the test fabrics, it is possible to calculate water content regain coefficients of each measured condition. The measured coefficients can be compared to commercial moisture regain coefficients listed in the SFS 4876 standard. Coefficients of the standard are specified for 65.0 % ± 4.0 % RH and 20.0 °C ± 2.0 °C standard atmosphere condition of the SFS-EN ISO 139/A1 standard (SFS-EN ISO 139/A1). In Figure 1, the commercial moisture regain coefficients are drawn at 65.0 % RH as dots, next to the measured coefficients connected by lines. The commercial moisture regain coefficients are reasonably in line, except for polyester. The polyester test piece does not gain weight to an extent that can be measured by the digital scale even at 85 % RH, but commercial moisture regain expects it to gain 1.50 % more weight at 65.0 % RH (SFS 4876). That would be an 0.2 g increase to the 13.2 g dry weight of the test piece.

Effects on spectrum

Spectrums are gathered of each condition and test fabric, shown in Figure 2. Judging from the weight, wool and cotton absorb water content from air humidity, while polyester appears unaffected. The same effect can be seen in how the spectrum of polyester appears relatively unchanged, while wool and cotton have definite changes by absorbed water. The first overtone of water (H2O) causes a peak at 1460 nm, and the first overtone of hydroxide (OH), which is bundled in small amounts along water moisture, causes a peak at 1600 nm (Davies 2017). The more moisture the fabrics have absorbed, the greater the change in the spectrum. Cotton has relatively small changes because it is less hydrophilic than wool. Because of this, as an additional demonstration, the cotton test fabric is held in running water and then a spectrum is acquired again, which can also be seen in Figure 2.

Figure 2. Non-pretreated NIR absorbance spectrums of cotton, wool, and polyester test fabrics, at 1100-1650 nm, as water content changes in different humidity conditions (Salin 2018, 70-71).

To produce one spectrum, NIR sampling is done 32 times by the analyzer, in order to reduce noise. Spectrums in Figure 2 are averaged.

Effects on automatic identification

When running automatic identification for the test fabrics in Vision software, all spectrums are correctly identified without an error, except the experimental cotton sample that is directly soaked in running water. No other spectrums are ambiguous, non-identified nor mistaken as wrong material (Salin 2018, 72.)

The identification algorithm in use is Correlation in Wavelength Space, with threshold value of 0.73. The threshold value is forked by trial-and-error and determined by result of zero failures as the most optimal for this identification library. Calculation of 2nd derivate and Standard Normal Variate (SNV) are used as spectral pre-treatments, as they perform adequately in verification. (Salin 2018, 41-43.)

Conclusion

Textile recycling can have a large environmental effect. It has been estimated, that for example in Scandinavia textiles create the largest environmental impact after food, housing, and mobility (Schmidt et al. 2016, 7). By automatic sorting, recycling can be improved as more textiles can be sent for appropriate processing by their known chemical composition. This enables the use of both mechanical and chemical fiber recycling processes that are unique to each fiber material of sorted textiles. Water content in textiles could however pose a problem for automatic identification with NIR analysis, which is used to make the sorting decisions (Smith 2011, 16). The experimental results of this study answer to some questions about the practical moisture sensitivity in automatic textile identification by NIR analysis. Furthermore, to make the results practical, the same NIR analyzer unit was used in this study that is being used in the REISKAtex® sorting unit of LUAS, which is a model that can be used on industrial scale.

When the identification library was trained with samples stored at 19 °C and 19 % RH conditions, it was still possible to correctly identify textiles that were dry, as well as textiles that had been kept at 85 % RH of 20 °C (Salin 2018, 72). This wide range of acceptable changes in water content was the major finding of this study. Wool fabric was the most hydrophilic fabric, measured by water absorption, and it also had the greatest changes in spectrum, therefore being the most moisture sensitive textile material for NIR identification. Cotton fabric was also hydrophilic, but it was a less sensitive material because of smaller changes in both spectrum and weight. Polyester fabric did not gain water absorption in measurable amounts and had no noticeable changes in spectrum, being hydrophobic and the least moisture sensitive material for NIR identification.

Considering the experiments discussed in this article, it would appear that humidity does not pose an obstacle for automatic identification of single fiber cotton, wool, and polyester textiles. Every test fabric piece was identified correctly in all intended conditions of the experiment. It should be noticed, though, that the experiments did not go beyond 85 % relative humidity of 20 °C.

References

Collier, B. & Epps, H. 1999. Textile Testing and Analysis. New Jersey: Prentice-Hall, Inc.

Dahlbo, H., Aalto, K., Salmenperä, H., Eskelinen, H., Pennanen, J., Sippola, K. & Huopalainen, M. 2015. Tekstiilien uudelleenkäytön ja tekstiilijätteen kierrätyksen tehostaminen Suomessa. [Online document]. Helsinki: Ympäristöministeriö. [Cited 16 May 2018]. Available at: https://helda.helsinki.fi/bitstream/handle/10138/155612/SY_4_2015.pdf

Davies, A. 2017. An introduction to near infrared (NIR) spectroscopy. [Cited 16 May 2018]. Available at: http://www.impublications.com/content/introduction-near-infrared-nir-spectroscopy

Fontell, P. & Heikkilä, P. 2017. Model for circular business ecosystem for textiles. [Online document]. Espoo: VTT.  VTT Technology 313. [Cited 16 May 2018]. Available at: http://www.vtt.fi/inf/pdf/technology/2017/T313.pdf

Metrohm AG. 2017. NIRS Analyzer PRO – DirectLight/NonContact. [Cited 16 May 2018]. Available at: https://www.metrohm.com/en-gb/products-overview/process%20analyzers/applikon%20nirs%20pro/A629281130

Salin, J. 2018. Automatic Identification of Textiles with NIR-spectroscopy. Master’s thesis. Lahti University of Applied Sciences, Faculty of Technology. Lahti.

Schmidt, A., Watson, D., Askham, C. & Brunn Poulsen, P. 2016. Gaining benefits from discarded textiles. LCA of different treatment pathways. [Online document]. Denmark: Nordic Council of Ministers. TemaNord 2016:537. [Cited 16 May 2018]. Available at: https://norden.diva-portal.org/smash/get/diva2:957517/FULLTEXT02.pdf

SFS 4876. 1987. Tekstiilit. Kuitusisällön ilmoittaminen. Helsinki: Finnish Standards Association SFS.

SFS-EN ISO 139/A. 2005. Textiles. Standard atmospheres for conditioning and testing. Helsinki: Finnish Standards Association SFS.

Smith, B. 2011. Fundamentals of Fourier Transform Infrared Spectroscopy. Boca Raton: CRC Press.

Telaketju. 2018. Telaketju ­– Mikä se on? [Cited 16 May 2018]. Available at: https://telaketju.turkuamk.fi/mita_telaketju_tekee/

Authors

Jussi Salin is a Master’s Degree student at Lahti UAS in the  Programme in Smart Industries and New Business Concepts.

Lea Heikinheimo, D.Sc. (Tech), is a principal lecturer at Lahti UAS, Faculty of Technology, in the Degree Programme in Process and Materials Technology and in the Master’s Degree Programme in Smart Industries and New Business Concepts.

Published 24.5.2018

Illustration: Oona Rouhiainen

Reference to this publication

Salin, S. & Heikinheimo, L. 2018. Effects of moisture on automatic textile fiber identification by NIR spectroscopy. LAMK RDI Journal. [Electronic journal]. [Cited and date of citation]. Available at: http://www.lamkpub.fi/2018/05/24/effects-of-moisture-on-automatic-textile-fiber-identification-by-nir-spectroscopy/